STUDY OF THE AUTONOMOUS VEHICLE USERS' BEHAVIOR IN DRIVING SIMULATION

CONTEXT

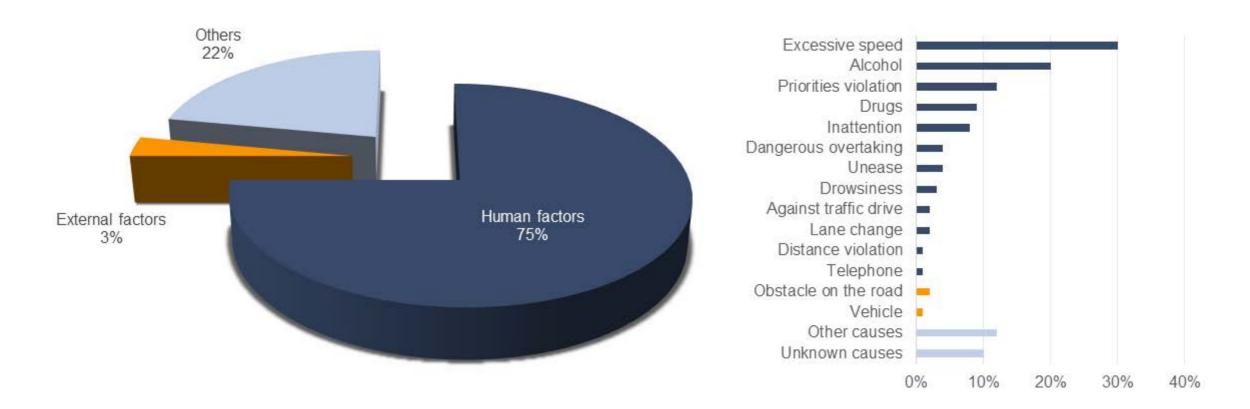
Evolution of driving mode

- Traffic fluidity
- Other possible activities

BUT change in human-vehicle interaction and accident conditions (Subit et al., 2017)

- New patterns
- Absence of driver
- More reactivity
- Out Of Position

Influence on human behavior?



From le moniteur automobile

CONTEXT

Source: File of alleged perpetrators of fatal accidents, 2014-2017, ONISR (France)

CONTEXT

Simulation: ideal tool

- Safety controlled environments
- Repeatability
- Reliability
- Portability
- Used by all car manufacturers and many labs

ISSUES

Simulation: not as simple

Motion restitution

Interaction

Validity

Latency

Environment rendering

Perception

Simulator sickness

Simulation: not as simple

Motion restitution

Interaction

Validity

Latency

Environment rendering

Perception

Simulator sickness

Work on the simulator itself

- Development of motion cueing algorithms (e.g., (adaptive) MPC-based, using NN) (Rengifo et al., 2019)
- Compensation of the latency
- Development of appropriate human-vehicle interaction modalities (Guo et al. 2019)
- Appropriate environment rendering (Mestre et al., 2016)

Take into account the driver/occupant

- Ensure distance/speed perception (Kemeny & Panerai, 2001)
- Alleviate simulator sickness (Chardonnet et al., 2017)
- Integrate drivers'/occupants' characteristics

Validity (Yanniset al., 2016)

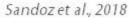
- Absolute validity
- Relative validity

ISSUES

Simulation: measuring driving behavior

- Performance measurements: reaction time, break response time, longitudinal and lateral controls (e.g., steering control)
- Physiological measurements: eye movements, heart rate, skin conductance, respiration
- Subjective measurements: NASA-TLX, Driving Activity Load Index, SSQ, presence

Can be intrusive Online/offline measurements

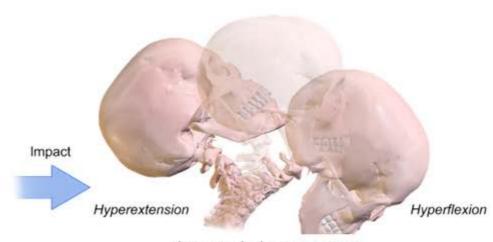


ILLUSTRATION

Personalized cognitive assessment of autonomous vehicles occupants' safety, study of the interactions between virtual reality and real dynamic events

Collaboration between a VR lab (LISPEN) and a biomechanics lab (IBHGC)

C. Di Loreto, J-R. Chardonnet, B. Sandoz, F. Merienne Arts et Métiers LISPEN/IBHGC


75.000 whiplashes/year in France

- 20 billion €/year in EU European Transport Safety Council 2017
- 25% of long term injuries Bella et al. 1982,1988
- Skull hyper flexion/extension
- Still not fully understood Chen et al. 2009

Prevalence likely to increase Subit et al. 2017

- · ADAS and autonomous car
- Out Of Position (OOP)
- · Less energy involved

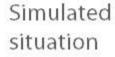
Whiplash

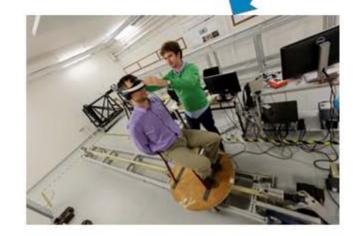
Blausen Medical Communications

How to better understand head stabilization strategies and prevent injuries?

In vivo tests
Dynamic solicitation
Virtual reality

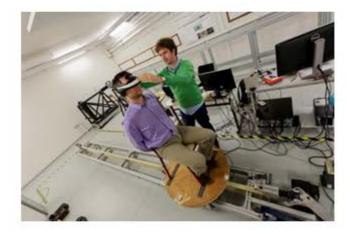
Cognition





Real situation

SLED (IBHGC)

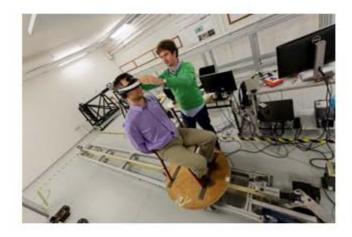


SAAM (LISPEN)

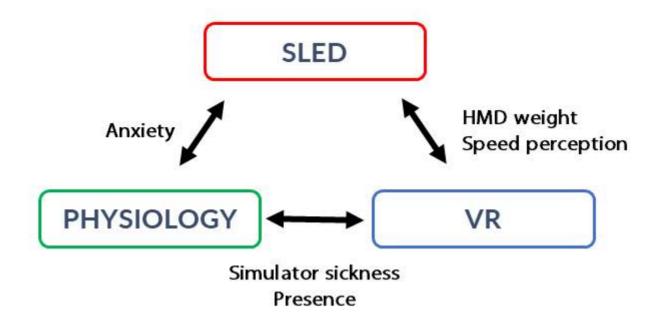
1

Influence of the emotional state on the dynamic response using VR

2

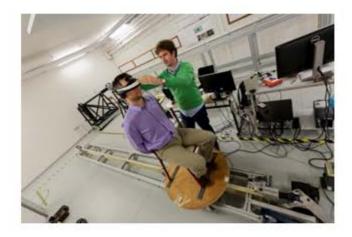


Comparison real-simulated



1

Influence of the emotional state on the dynamic response using VR

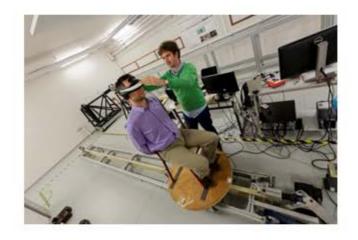

Influence of cognitive parameters on head movements studied in in vivo tests (Blouin et al., 2006; Vibert et al., 2001; Kumar et al., 2003; Siegmund et al., 2003)

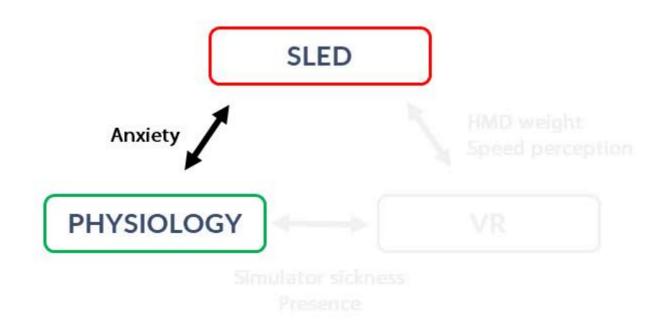
1

Influence of the emotional state on the dynamic response using VR

SLED

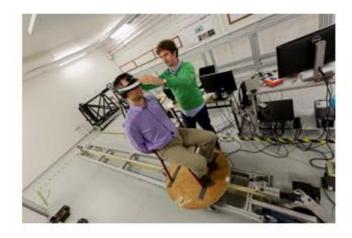
- ✓ Travel distance: 5 m
- ✓ Acceleration: 0.5 g (empty operation: max 10 g)
- ✓ Labview control


Kumar et al. 2003

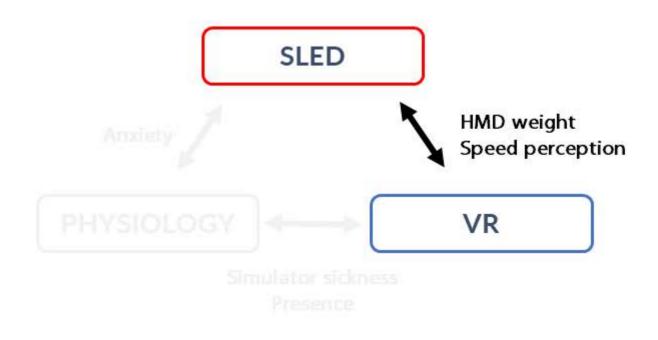


1

Influence of the emotional state on the dynamic response using VR


Gross & Levenson, 1995

Observed significant differences on ROM



1

Influence of the emotional state on the dynamic response using VR

HMD weight

- Subjects seem to compensate too much
- HMD may have a significant influence on behavior

Speed perception

- No significant difference but change in stabilization strategy
- Incorrectness of simulated environments rendering may have an influence on behavior

Comparison real-simulated Collaboration with CASR (Australia)

10 male subjects:

- Height: 179 ± 4 cm
- Weight: $77 \pm 3 \text{ kg}$
- Age: 35 ± 13 yo

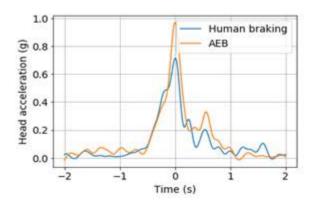
Physically comparable Ethics committee

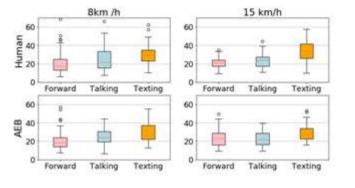
For each subject:

- ROM recording
- 36 trials, 12 conditions:
 - 8 or 15 km/h
 - 3 positions
 - AEB or « human » braking

Phone

2




Comparison real-simulated Collaboration with CASR (Australia)

✓ Head acceleration significantly affected by the breaking modality and not by the speed

(Di Loreto et al., 2019)

2

Comparison real-simulated Collaboration with CASR (Australia)

Institut Image's SAAM driving simulator

/	To			
1	10 6	o D.		
	at D		sent	1
		13	219	ed]

Degree of Freedom	Displacement Comb. Motion	Displacement Single DOF	Velocity	Acceleration
Pitch	+25/-23 deg	±22 deg	±30 deg/s	±500 deg/s²
Roll	±22 deg	±21 deg	±30 deg/s	±500 deg/s²
Yaw	±23 deg	±22 deg	±40 deg/s	±400 deg/s²
Heave	±0.18 m (±7.0 in)	±0.18 m (±7.0 in)	±0.30 m/s (±11.8 in/s)	+0.5 g
Surge	±0.27 m (±11.1 in)	±0.25 m (+102/9.5in)	±0.50 m/s (±19.7 in/s)	±0.6 g
Sway	±0.26 m (±11.7in)	±0.25 m (±10.2 in)	±0.50 m/s (±19.7 in/s)	±0.6 g

CONCLUSION

Study of driver's behavior

- Complex to achieve (consider many parameters hardware, software, psycho-physiology)
- Work on driving simulator (hardware): achieve real time (motion restitution, image), consider OOP situations (360°)
- Better integrate the driver in the loop (system customization – use of Al tools –, appropriate HMIs)

From le moniteur automobile

From Renault

STUDY OF THE AUTONOMOUS VEHICLE USERS' BEHAVIOUR IN DRIVING SIMULATION

